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ABSTRACT

We use nonparametric methods to compute the environmental inefficiency of 100 countries over the period 1990-2017 on the macro-level. The 
inefficiency is expressed as the potential reduction of GHG emissions, holding economic output constant. Based on that, we estimate different trend 
functions and project the trends further until 2050. Confidence intervals to indicate the uncertainty inherent in the long- run projections are obtained by 
bootstrapping. We compare the efficient emissions remaining after subtracting the potential reductions with the official EU climate targets. It becomes 
apparent that a sizable contribution could be made by reducing inefficiency. However, even after removing the entire inefficiency, the results also 
indicate that this alone is probably not sufficient to break the increasing trend of GHG (and especially CO2) emissions. Thus, further policy measures 
are required for breaking the trend.
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1. INTRODUCTION

In the international scientific and political debate, it is widely 
agreed that a significant and rapid reduction of anthropogenic 
greenhouse gas (GHG) emissions, and particularly CO2 emissions, 
is necessary to stabilize the global average temperature and prevent 
harmful consequences of climate change. Despite international 
climate protection efforts, such as the most recent adoption of the 
Paris Agreement in 2015, global emissions continue to increase. 
For example, global CO2 emissions peaked at 36.3 gigatons (gt) in 
2021, an increase of 6% compared to 2020 (International Energy 
Agency, 2021a). In addition, the latest World Energy Outlook from 
the International Energy Agency (2021b) suggests that current 
climate policies will not achieve the required reductions in CO2 
emissions to reach zero emissions by 2050.

While technological progress and the substitution of fossil fuels 
with renewable energy sources are widely discussed in the climate 

debate and are expected to make a major contribution to climate 
protection, less is known about potential emission reductions as 
a result of reducing inefficiency. However, identifying existing 
inefficiencies in current production technologies and unexploited 
reduction potentials could provide useful information for policy 
makers and international climate policy.

A commonly used approach for conducting efficiency analysis 
is the nonparametric data envelopment analysis (DEA). In the 
DEA approach, a piece-wise best practice function (frontier) is 
estimated using historical input and output data. While DEA was 
originally used only for economic performance studies, it has been 
developed in recent decades to incorporate the joint production of 
“good” or desirable outputs and “bad” outputs such as emissions. 
By using directional distance functions (DDFs), the distance to 
the frontier of given input-output combinations can be measured 
to determine the degree of inefficiency. Since then, DEA has 
also been frequently used in environmental research to examine 
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environmental performance and efficiency, expressed as the extent 
of the potential reduction of the “bad” outputs.

Zhang and Choi (2014), for example, provide an overview on 
energy and environmental modeling in the period from 1997 
to 2013. Generally, the DEA and DDF approaches are mainly 
used to study environmentally sensitive productivity growth and 
environmental efficiency at the country or regional level (e.g. 
Anser et al., 2020; Chen and Jia, 2017; Halkos and Tzeremes, 
2012; Jeon and Sickles, 2004; Kumar, 2006; Yörük, 2007) and at 
the firm or sector level (e.g. Färe et al., 2005; Krautzberger and 
Wetzel, 2012; Kumar Mandal and Madheswaran, 2010; Stergiou 
and Kounetas, 2022; Weber and Domazlicky, 2001; Wu et al., 
2019; Zhang, 2009). While most of these studies conclude that, 
on average, efficiency improvements are possible, or even find 
a decrease in (environmental) productivity, a quantification of 
the associated potential emission reductions in physical units 
is widely missing. Also most of the literature on eco-efficiency 
relies on relative measures instead of physical units (Färe et al., 
2004; Kuosmanen and Kortelainen, 2005 and Zofío and Prieto, 
2001; among others). A first quantification of emission reduction 
potentials as a result of inefficiency can be found in Hampf 
and Krüger (2015). For a sample of major pollution emitting 
countries, Hampf and Krüger (2015) find sizable reduction 
potentials if macroeconomic inefficiency is completely removed. 
Related studies for EU countries and several industrial sectors 
are conducted by Krüger and Tarach (2020; 2022), and Fait and 
Wetzel (2024) also find substantial emission reduction potentials 
at the country as well as at the sector level.

In addition to quantifying potential emission reductions due to 
inefficiencies, the impact of exploiting these reduction potentials 
on the future growth of GHG emissions is also rather unknown. 
For this purpose, trend functions can be used to project remaining 
emissions (i.e., after subtracting potential reductions) into the 
future and determine the contribution of eliminating inefficiencies 
to achieving climate targets.

The aim of this work is therefore to identify global emission 
reduction potentials and to determine the potential contribution of 
removing macroeconomic inefficiencies to future reduction targets. 
For this, we rely on the nonparametric DEA framework using 
DDFs. Unlike most previous studies, we endogenously determine 
optimal directions of emission reductions as suggested by Hampf 
and Krüger (2015). To avoid downward biased estimates, we 
implement a bootstrap bias correction based on a version of the 
algorithm of Simar and Wilson (1998). Furthermore, a key aspect 
of this work is the dynamic projection of the identified reduction 
potentials into the future to determine how the growth of global 
GHG emissions will change if possible reduction potentials are 
exploited and to what extent this will contribute to the achievement 
of international climate targets. Our empirical analysis is conducted 
for a comprehensive sample of 100 countries for the period from 
1990 until 2017. Trend projections are run until 2050. In addition, 
we provide sub- group analyses for the Top 10 emitters (based on 
historical GHG emissions) and major EU countries. To provide 
insight into the role of different GHGs, efficiency analyses and 
trend projections are not only performed for a single emission 

variable (total GHGs), but also for a variant where total GHG 
emissions are split into CO2 and non-CO2 emissions.

Overall, our work contributes to the literature in several ways: 
Methodologically, our work combines several aspects, such as 
the endogenous determination of optimal directions, the use of 
trend functions to estimate projections of future emissions, and 
the application of a bootstrap procedure. In addition, we consider 
a comprehensive sample and different emission variables, which 
contributes to a better understanding of the impact of efficiency 
improvements on the trajectory of global GHG emissions. 
Therefore, our results provide useful guidance for policy makers 
regarding unexploited reduction potentials to achieve global 
climate targets.

The outline of the paper is as follows: Section 2 describes the data 
sources and adjustments to the data used to construct the input 
and output vectors, and provides insights into the current levels of 
GHG emissions for the subgroups. Section 3 briefly outlines the 
empirical framework for the inefficiency measure, the bootstrap 
procedure, and the trend projections. Section 4 discusses the 
results for the different trend functions and emission variables, 
while Section 5 finally concludes.

2. DATA DESCRIPTION

The data used for the empirical analysis rely on two main sources. 
The first is the Penn World Table (PWT) version 10 for the inputs 
and the economic output. The data can be found at https://www.
rug.nl/ggdc/productivity/pwt. A detailed description is provided 
on this site and in Feenstra et al. (2015). The economic output 
is the output- side real GDP at chained PPPs (in million 2017 
US$), variable rgdpo in the PWT. A substantial advantage of the 
more recent PWT versions compared to older versions is that 
GDP measures are also computed from the output side, which 
are more suitable for productivity analyses than expenditure-side 
measures (Feenstra et al., 2009; for a comparison and detailed 
discussion).

As economic inputs we use labor and capital. The labor input is 
measured as the raw labor input (variable emp = number of persons 
engaged in the PWT). As an alternative, we considered a human 
capital measure computed as raw labor multiplied by the index of 
human capital per person (variable hc in the PWT). This measure 
is, however, dominated by the differences in the raw labor input and 
is highly correlated with raw labor (correlation >0.98). Physical 
capital is measured as the capital stock at constant 2017 national 
prices (in million 2017 US$) (variable rnna in the PWT), converted 
to international prices at chained PPPs by multiplying with the 
factor rgdpo/rgdpna, where rgdpna is the real GDP at constant 
2017 national prices (in million 2017 US$). Such a measure is 
also used in Krüger (2016). The data are available from 1950 to 
2019 with gaps for a substantial number of countries.

The second data source are historical emissions data provided by 
the Potsdam Institute for Climate Impact Research (PIK). Their 
PRIMAP-hist national historical emissions (version 2.1) time 
series provides emissions data for a comprehensive country sample 
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as annual time series over the period 1850-2017. The data sources 
and methods are described in detail in Gütschow et al. (2016) 
and Gütschow et al. (2019). The data are retrieved from https://
www.climatewatchdata.org. When considering a single emission 
variable, we use an aggregate of GHG emissions consisting of all 
Kyoto gases (excluding land use, land use change and forestry, 
LULUCF) according to the fourth assessment report, measured 
in megatons (mt) of CO2 equivalents (CO2e). In the case of two 
emission variables, we single out carbon dioxide and work with the 
two emission variables CO2 and other (non-CO2) GHG emissions, 
computed by subtracting CO2 from the aggregate GHG emissions.

The analysis is based on a balanced panel of n = 100 countries 
for the period 1990-2017. We deliberately exclude countries 
which are merely large cities rather than countries (e.g. Hong 
Kong, Luxembourg, Macao, and Singapore) and countries which 
are small major oil producing countries (e.g. Bahrain, Brunei, 
Kuwait, Qatar, and Saudi Arabia). These countries are likely to 
bias frontier function estimates, as discussed in Growiec (2012). 
We also exclude a couple of very small countries because they 
caused a breakdown of the bootstrapping procedure. The remaining 
100 countries are representative for the world, since they account 
for about 94% of the world GHG emissions (computed from the 
average of the last 10 years of the sample (period 2008-2017) 
for each country to avoid the influence of a particular year). The 
sample countries are listed in Table A1 in Appendix A, jointly 
with their GHG emission shares in the average of the last ten 
sample years.

Figure 1 shows the development of the total GHG emissions over 
time for the world (i.e. all 208 countries in the PIK database), our 
total sample of 100 countries, and the two subgroups of the top 10 
emitting countries and the 23 EU countries in the sample. We see 
that the sample countries cover the majority of GHG emissions 
and track the world’s emissions quite well over time. The part 
accounted for by the Top 10 group is substantial and grows in a 
similar way as the total. In this group China is by far the largest 

contributor (followed by the US, India and Russia, Table A1). 
China’s emission trajectory and also projections are investigated 
in detail in Grubb et al. (2015) and Sanwal and Zheng (2018). By 
contrast, the aggregate GHG emissions of the EU countries are 
rather small and appear to be declining, especially after 2010.

3. MEASUREMENT AND TREND 
PROJECTION

This section outlines the basic ideas of the nonparametric 
measurement approach for the inefficiencies employed in this 
paper. The outline gives the intuition of the approach whereas the 
formal details and further discussion is relegated to an appendix 
(Appendix B). The inefficiencies are expressed in CO2 equivalents 
and subtracted from the actual emissions to obtain the so-called 
efficient emissions which are subsequently projected into the 
future. The way to estimate the trend functions to conduct the 
projections is also explained in this section.

3.1. Nonparametric Inefficiency Measurement
We use nonparametric methods of efficiency analysis to determine 
the potential emission reductions of the countries. The approach 
is based on data envelopment analysis (DEA), developed by 
Charnes et al. (1978) and Banker et al. (1984), and in particular 
the ex- tension to the case of the directional distance functions 
(DDF), introduced by Chambers et al. (1996), which easily allows 
to introduce emissions as undesirable outputs of a pro- duction 
process, see Chung et al. (1997). By this approach, inefficiency is 
measured as the distance to a piece-wise linear frontier function 
along a specific direction (Färe and Grosskopf, 2004 and Zhou 
et al., 2008b). The great advantage of this approach is that 
functional form assumptions about the underlying technology 
(e.g. a production function) are not needed and that it relies only 
on quantities of the inputs and outputs without requiring price 
information.

In our application, we use these methods to measure the extent 
of the inefficiency by the maximum possible reduction of the 
GHG emissions to reach a point on the frontier function which 
is determined by the most efficient country observations. We 
investigate two cases, one with total GHG emissions as the single 
emission variable and another with CO2 and other GHG (calculated 
as GHG-CO2) as two separate emission variables. In the latter 
case, a weighting of the extent of reduction of the two emission 
variables is necessary which is endogenously determined by an 
extension of the nonparametric method due to Hampf and Krüger 
(2015). All calculations are performed under variable returns to 
scale which is less restrictive than the more common assumption 
of constant returns to scale (Zhou et al., 2008a) for the adaption 
to the DDF setting with undesirable outputs).

To perform a bias correction and to establish confidence intervals 
for the in-sample period a bootstrap approach specifically adapted 
to the frontier function estimation with DDF is used. This bootstrap 
orginiates in the ideas of Simar and Wilson (1998) (see also 
Simar and Wilson (2008, 2011); Simar et al., 2012). Krüger and 
Tarach (2022) is a recent application of this approach. Appendix B 

Figure 1: Time series of total greenhouse gas emissions aggregated 
over Countries
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provides the formal details also on the implementation of the 
bootstrapping.

3.2. Estimation of Trend Functions
For projecting the remaining emissions into the future, we rely 
on two forms of trend functions.1 More precisely, let yt denote 
the sum of emissions remaining after subtracting the potential 
reductions measured by efficiency improvements. These are then 
called the efficient emissions. The first trend function is a simple 
log-linear trend

ln yt = β1 + β2⋅t + ut (1)

with the sample period running over t = 1990,..., 2017. As usual, 
β2 represents the (constant) growth rate of yt. The trend regression 
is estimated by a robust regression estimator proposed by Koller 
and Stahel (2011; 2017) with the data from the period 1990-2017 
and then projected into the future with t = 2018,..., 2050. This 
estimator is highly robust with respect to outlying observations 
combined with improved efficiency properties in small samples. 
We use the implementation in the R-package “robustbase.”

The simple log-linear trend function is restricted to a monotonically 
increasing or decreasing form of the trend. It fits quite well in sample, 
however. Adding further polynomial terms in t is not sensible since 
polynomials generally have the strong tendency to diverge out of 
their sample range, rendering the projections meaningless.

A functional form based on a logistic function with a certain 
(sample-determined) saturation level may be another reasonable 
choice here. Therefore, we apply the four-parameter logistic model

y
t

ut t� �
�

� �
��

� �
� �1
2 1

4 31 exp( (ln ln ))
(2)

used in bioassay studies to estimate so-called dose-response curves 
(Ritz and Streibig, 2005; and Ritz et al., 2015). This is a flexible 
functional form to fit a logistic model for yt without having to pre-
assign values for the lower and upper limits.2 By construction, this 
function is bounded by the lower limit β1 and the upper limit β2. 
The parameter β3 represents the half-way between the limits and β4 
represents the slope around β3.

3 The parameters of this logistic trend 
function are also estimated by a robust estimator based on Tukeys 
biweight loss combined with quasi-Newton (BFGS) optimization, 
which is implemented in the R-package “dr4pl,” and the trend is 
projected until 2050 as for the log-linear trend.

The confidence intervals for the out-of-sample projections are 
computed point-wise for each point in time. Specifically, we 

apply the BCa (bias-corrected and accelerated) confidence interval 
of Efron (1987) to the logged values and then exponentiate 
the confidence bounds. This procedure is valid because of the 
transformation-respecting property of BCa confidence intervals. 
In addition, we reach second-order accuracy of the confidence 
intervals (Efron and Tibshirani (1994, p. 187) for more on these 
properties). The computation is based on the package “boot” for 
R (Davison and Hinkley, 1997).

4. RESULTS AND DISCUSSION

In this section, the empirical results of the two trend functions 
(log-linear and logistic) from section 3.3 are discussed. For both 
functions, the efficient emissions, i.e. the emissions remaining 
after subtracting potential reductions, are considered for the 
total sample and the two subgroups of Top 10 emitters and EU 
countries. Trend projections are provided for total GHG, CO2 and 
non-CO2 emissions.

For both trend functions, the figures for presenting the results are 
constructed in a similar way. In each panel, the solid gray line 
depicts the actual emissions of the respective country group and 
the GHG under consideration. The solid black line shows the 
efficient emission levels of the sample period up to the vertical 
line. After the vertical line the solid line represents the projections 
from the respective trend functions. The trend curve is extended 
backwards by the dotted line to show the in-sample fit. The dashed 
lines represent the 95% BCa bootstrap confidence intervals for 
the in-sample values and for the projections. Furthermore, the 
squares depict the targets of the remaining emissions set by the 
EU, i.e. the reduction of total GHG emissions to 80% of the 1990 
levels by 2020, to 45% by 2030, and to near zero (supposed 5%) 
by 2050 (European Council, 2009; European Union, 2021). The 
quantitative target for 2040 is not yet determined. We suppose 
20% as an intermediate target to be reached by 2040. Note that 
these percentages are also applied to the total sample and to the 
Top 10 group.

4.1. Log-Linear Trend Projections
We first turn to the projections using the log-linear trend function 
in equation (1). Figure 2 shows that efficient total GHG emissions 
during the sample period range from 15 to 20 gigatons (gt) CO2e 
for the total sample, 10-15 gt CO2e for the Top 10 emitters, and 
2.5-3.5 gt CO2e for the EU countries. Thus, the Top 10 emitters 
and the EU account for the majority of all remaining emissions, 
with the Top 10 emitters clearly dominating. This is also reflected 
in the trend of efficient emissions over the sample period for the 
total sample, which is almost the same as for the Top 10 emitters, 
but on a slightly higher level. For both, the total sample and the 
Top 10 emitters, efficient GHG emissions increase steadily until 
the 2007-08 global financial crisis and then decline slightly until 
the mid-2010s. In the last years of the sample period, efficient 
emissions return to an increasing trend. In line with this, the 
log-linear trend functions predict further exponential growth in 
efficient total GHG emissions until 2050.

In contrast, the development and projection of efficient emissions 
of total GHGs is different in the EU countries. During the sample 

1 Because of the general vagueness of those assertions about the future the 
climate literature prefers the term “projection” instead of “forecast” or 
“prediction” (see Hsiang and Kopp (2018, p. 10))

2 An even more flexible form is the five-parameter logistic model yt = β1 
+(β2 − β1)/(1 +exp(β4(ln t − ln β3)))β5 +ut with the additional parameter β5, 
which controls the degree of asymmetry. In the bootstrapping exercise this 
function proved not to be usable due to severe convergence problems in the 
numerical optimization.

3 Note that we are not interested here in the particular parameter values 
themselves, but only in the trend function determined by them
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period, efficient emissions fluctuate considerably, but are only 
slightly higher in 2018 compared to 1990. Consistent with the trend 
in efficient emissions during the sample period, the log-linear trend 
projection yields a fairly constant level of efficient emissions for 
total GHGs until 2050. However, for all samples, the bootstrap 
confidence intervals are rather wide, especially at the end of the 
projection period and for the total sample as well as for the Top 
10 emitters, indicating substantial uncertainty in the estimates of 
emission reduction potentials.

Considering now the emission targets formulated by the EU 
(indicated by ■), one can see that for the total sample and the 
Top 10 emitters the 2020 target lies within the 95% confidence 
intervals, while the efficient emissions of total GHGs of the EU 
countries are already well below the 2020 target. Furthermore, the 
2030 target is also within the 95% confidence interval of the log-
linear trend projections for the EU countries. In contrast, for the 
total sample and the Top 10 emitters, efficient total GHG emissions 
are above the 2030 target, and the 2040 and 2050 targets cannot 
be met by any of the three samples by reducing inefficiencies 

and associated emissions. At first glance, the performance of the 
sample looks rather poor, but directing technological change and 
sectoral structural change directly to modes of production which 
are less emission intensive would be appropriate to shift the 
trend downwards. Furthermore, the efficient emission levels at 
the end of the projection period are quite moderate compared to 
the trend projections of actual emissions (gray solid line). This is 
especially true for the total sample and the Top 10 emitters, while 
for the EU countries actual emissions show a decreasing trend 
in the projection period. The efficient emissions, however, are 
achievable only if it is assumed that the reduction potentials due 
to the macroeconomic inefficiencies are fully realized. Of course, 
it is arguable whether this assumption is realistic, but it is apparent 
that eliminating inefficiencies in current production technologies 
and associated emissions could make a significant contribution to 
achieving the climate targets.

Turning to Figures 3 and 4, depicting the log-linear projections 
of efficient CO2 and non-CO2 emissions, it is noticeable that 
the efficient emissions of total GHG are mainly driven by CO2 

Figure 2: Projections of Efficient Emissions (total greenhouse gas, 
log-linear trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections (dotted line)

Figure 3: Projections of Efficient Emissions (CO2, log-linear trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections dotted line)
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emissions. For both, efficient emissions during the sample period 
and trend projections, the patterns are very similar for total GHG 
and CO2 emissions for all three panels. Again, the confidence 
intervals for efficient CO2 emissions during the projection period 
are quite large, as in the case of total GHG emissions. However, 
in contrast to total GHG emissions, the trend function for the 
EU countries shows an increasing trend, implying that the level 
of efficient CO2 emissions is increasing over the projection 
period, whereas actual CO2 emissions are characterized by a 
decreasing trend.4 Considering only CO2 emissions, the 2020 
target is overachieved, and the 2030 target is (almost) within the 
95% confidence interval of all groups. The CO2 targets for 2040 
and 2050 still seem beyond reach when considering only the 
elimination of macroeconomic inefficiencies.

Regarding the non-CO2 emissions, a different result can be 
observed. Overall, efficient non-CO2 emissions are quite low 

during the sample and projection periods for all country groups, 
and the confidence intervals are narrower than for CO2 and total 
GHGs, implying that the estimates are more precise. Moreover, the 
trend functions show nearly constant or only slightly increasing 
values for efficient emissions, so that even the 2050 emissions 
target is only slightly below the confidence interval in all panels. 
Overall, this suggests that substantial reductions in non-CO2 
emissions may already be possible if past rates of reduction (based 
on the technological trends during the sample period) continue on 
average over the next few decades.

Overall, one can see that a significant contribution could be made 
to achieve the climate targets if the existing inefficiencies of current 
production technologies could be completely eliminated or at least 
to a considerable extent. A particularly large potential therefore 
exists in the reduction of CO2 emissions, while other non-CO2 
GHGs are already at a comparatively low level.

4.2. Logistic Trend Projections
Analogous to the log-linear trend projections, the logistic trend 
projections are estimated with the trend function (2) for total 
GHG, CO2, and non-CO2 emissions for the total sample, the Top 
10 emitters, and the EU countries. Figures 5-7 again show the 
actual and efficient emissions, i.e. the remaining emissions after 
subtracting the potential reductions estimated jointly with the 
trend functions.

During the estimation period up to the vertical line, the efficient 
emission levels are un- changed compared to the previous section, 
as they are obtained from the same efficiency analysis and the 
bootstrap procedure and likewise provide the basis for both trend 
functions. For the projection period, on the other hand, there are 
significant differences from the log-linear function for almost all 
subgroups and emission categories.

Considering total GHGs (Figure 5), under the logistic trend 
function, efficient emissions for both the total sample and the 
Top 10 emitters remain fairly constant over the projection 
period. Therefore, the efficient GHG emission levels are also 
significantly lower at the end of the projection period compared 
to the log-linear trend projections. The trend lines for the actual 
emissions (gray solid lines) also quickly turn to a constant shape. 
However, with the exception of the 2020 target, the efficient 
emissions are still higher than the percentage emission levels 
targeted by the EU.

For the EU countries, the efficient emissions of total GHGs show a 
slightly decreasing trend in the projection period under the logistic 
trend function. However, since the lower confidence bound is 
higher, the 2030 target is no longer within the confidence interval, 
unlike for the log-linear trend projection. In addition, the upper 
confidence bound is also higher and shows an increasing trend, 
which means that the projection of efficient GHG emissions for 
EU countries is subject to increasing uncertainty over time.

Turning to Figures 6 and 7, depicting the projections of efficient 
CO2 and non-CO2 emissions in the logistic trend function, there 
are some similarities and differences compared to the log-linear 

4 The crossing of the trend lines is merely a manifestation of the great deal of 
estimation uncertainty associated with the long-run trend projections.

Figure 4: Projections of Efficient Emissions (non-CO2, log-linear 
trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections dotted line)
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function.5 During the projection period, efficient CO2 emissions 
are significantly lower for the logistic trend function than for the 
log-linear function. For the total sample and the Top 10 emitters, 
the efficient CO2 emissions projected by the logistic trend becomes 
nearly half of the log-linear trend projection towards the end of 
the projection period. Besides, for the total sample, the 2020 target 
is over-achieved, while the 2030 and 2040 targets are within the 
confidence intervals. However, the lower confidence bound is 
quite low, again implying some uncertainty in the estimates in 
this direction. For the Top 10 emitters and EU countries, the 2020 
target is also over-achieved, and the 2030 target is within the 
confidence bounds, as in the case of the log-linear function. For the 
EU countries, efficient CO2 emissions also increase slightly during 
the projection period in the case of the logistic trend function, but 
this increase is less pronounced than for the log-linear function.

With respect to non-CO2 emissions, the trend projections for the Top 
10 emitters and the EU countries differ significantly for the logistic 

and log-linear functions. For the logistic trend function, there is a 
more significant increase in efficient non-CO2 emissions, especially 
for the Top 10 emitters. In addition, in the case of the Top 10 emitters, 
the non- CO2 emissions are almost of the same magnitude as the 
CO2 emissions, i.e. the difference between the efficient emissions 
at the end of the projection period is considerably lower under the 
logistic trend function compared to the log-linear trend function.

However, the confidence intervals are wider for all groups, 
indicating greater uncertainty in the estimates compared to the 
log-linear trend function. For this reason, even the 2040 target 
would be over-achieved (achieved) by the total sample and the EU 
countries (Top 10 emitters), and the 2050 target could also be almost 
achieved by all groups if existing inefficiencies could be removed.

Comparing the fit of both trend functions (measured by an R2 
measure computed as the variance of the fitted values divided by 
the variance of the actual efficient emissions) we find a generally 
better (or at least very close) in-sample fit of the logistic trend 
function compared to the log-linear trend function. The exception 
is the case of CO2 and the Top 10 group, where the logistic trend 

Figure 5: Projections of Efficient Emissions (total greenhouse gas, 
logistic trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections dotted line)

Figure 6: Projections of efficient emissions (CO2, logistic trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections dotted line)

5 Note that the results for CO2 in Figure 6 are not computed with a robust 
estimator due to severe convergence problems during the bootstrapping.
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curve is completely flat and the fit is accordingly almost zero. 
During the projection period, however, it is readily visible that the 
logistic trend functions show a strong tendency to turn quickly to 
constant saturation levels, which appears to be rather unrealistic 
compared to the log-linear trend estimates. For that outcome, it 
is crucial that we only observe the “early” part of the S-shape of 
the logistic function in the data.

Overall, regardless of the form of the trend function, we find that 
macroeconomic inefficiencies in current production processes 
contribute significantly to the emission of harmful GHGs into the 
atmosphere. Exploiting the associated reduction potentials and 
eliminating inefficiencies could therefore contribute significantly 
to flatten GHG emissions growth in the future and achieving the 
emission targets.

5. CONCLUSION AND POLICY
IMPLICATIONS

In light of the increasing prevalence of natural disasters as a result 
of rising anthropogenic GHG emissions, international climate 

protection is becoming an increasingly important issue. It is 
expected that technological progress and the shift to renewable 
resources in energy generation will make a significant contribution 
to reducing global emissions. In contrast, less is known about 
the emission savings which can be achieved through efficiency 
improvements and to what extent an elimination of existing 
inefficiencies could influence future GHG emissions trends. 
Benchmarking approaches, such as the nonparametric DEA, 
offer a possibility to identify existing inefficiencies in current 
production technologies and are frequently used in the economic 
and also environmental research. While previous benchmarking 
studies considering the simultaneous production of good and bad 
outputs, such as emissions, have focused primarily on determining 
environmental efficiency and environmentally sensitive 
productivity growth, the quantification of potential emissions 
reductions from eliminating inefficiencies is missing to date.

In this paper, nonparametric methods are used to (a) measure the 
degree of inefficiency in current production technologies for a 
comprehensive sample of 100 countries and (b) estimate dynamic 
trend projections of GHG reduction potentials. Our analysis relies 
on a bootstrap procedure for measuring inefficiency to avoid 
downward biased results and two specifications of trend functions 
for the projection of emission reduction potentials. In addition, a 
detailed analysis of different country and GHG subsets is provided. 
The sample period covers 1990 until 2017, and trend projections 
are run until 2050.

During the sample period, we find sizable reduction potentials for 
GHG, CO2 and non-CO2 emissions under both trend functions. 
Comparing actual and efficient total GHG emissions, i.e. remaining 
emissions after subtracting reduction potentials from 1990 to 2017, 
emissions could be reduced by 50% on average if macroeconomic 
inefficiencies were fully eliminated. Thereby, total emissions are 
mainly driven by CO2 emissions and the group of Top 10 emitters, 
while EU countries and non-CO2 emissions are comparatively 
minor contributors.

Regarding the projection of efficient emissions, the two trend 
functions provide different results. Under the log-linear trend 
function, we find that efficient emission of total GHG, i.e. 
remaining GHG emissions after subtracting reduction potentials, 
increase exponentially after the sample period until 2050 for the 
total sample and the group of the Top 10 emitters. In contrast, 
under the logistic trend function, efficient GHG emissions for 
both samples remain rather constant or only slightly increase 
during the projection period. Therefore, efficient emission levels 
are significantly lower at the end of the projection period under 
the logistic trend function than under the log-linear trend function. 
Distinct differences are also observed regarding the role of 
CO2 emissions. While under the log- linear trend function, CO2 
emissions are mainly driving efficient GHG emissions, efficient 
non-CO2 emissions are of a similar size as efficient CO2 emissions 
under the logistic trend function.

Despite the different results of the trend functions and higher 
efficient emission levels in the log-linear trend projection, we 
observe that efficiency improvements can have a sizable effect 

Figure 7: Projections of efficient emissions (non-CO2, logistic trend)

Actual emissions and trend projection (gray solid line), efficient 
emissions after subtracting potential reductions and trend projection 
(black solid line), 95% confidence intervals (dashed lines), backward 

trend projections dotted line)
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on future emission levels. Therefore, projected efficient emissions 
levels are substantially lower in both specifications compared to 
trend projections of actual emissions. In addition, our comparison 
of efficient emission levels and future emission targets show that 
some of these targets are achievable or even overachieved if 
macroeconomic inefficiency is removed. In this context, the great 
importance of increasing efficiency for the reduction of greenhouse 
gases is evident. Looking at the log-linear trend projections, for 
example, one can see that at the end of the projection period, actual 
emissions are significantly more distant from the 2050 target than 
efficient emissions. Following this example for the total sample, 
increasing efficiency could contribute a reduction of up to 47% 
to reach the target compared to the “business as usual” scenario 
(actual emission trend projection). This is further underpinned by 
estimates for the EU that are significantly lower for both actual 
and efficient emissions than for the Top 10 emitters. In the EU, 
increasing efficiency has played an important role in climate policy 
for many years and has also become a central component of the 
latest climate package, “Fit for 55” (EU, 2021). Although it is 
rather unclear whether the full elimination of inefficiency will be 
actually feasible, the results point to potentially large unexploited 
reduction potentials.

There is still a need for future research in this area. As already 
stated by Hampf and Krüger (2015), industry structure is a major 
factor influencing the emission levels of countries and should 
therefore be considered in the efficiency analysis. However, since 
sector-level data is still largely lacking for many countries, sectoral 
analyses are mostly feasible for EU countries as, for example, 
performed by Fait and Wetzel (2024), Krüger and Tarach (2020; 
2022). Unfortunately, the rather short time spans of sectoral data 
availability prevent analogous long-run projection exercises as 
performed in this paper on the sectoral level for the years to come.
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Appendix B: Nonparametric efficiency measurement and bootstrapping

In this appendix we outline the formal details of the nonparametric approach from the literature on efficiency analysis which is used to 
measure the macroeconomic inefficiency as well as the bootstrap approach employed to establish bias correction and confidence intervals.

APPENDIX

Table A1: Country list and GHG Emissions shares  
(in percentages)
China 26.25 Tanzania 0.18
United States of America 14.98 Austria 0.18
India 5.63 New Zealand 0.18
Russian Federation 4.67 Bolivia 0.18
Japan 2.94 Serbia 0.16
Brazil 2.35 Syrian Arab Republic 0.15
Germany 2.06 Portugal 0.15
Iran 1.82 Kenya 0.15
Indonesia 1.73 Ecuador 0.14
Canada 1.58 Finland 0.14
Mexico 1.55 Hungary 0.14
Republic of Korea 1.53 Bulgaria 0.13
United Kingdom 1.25 Ireland 0.13
Australia 1.19 Sweden 0.13
South Africa 1.19 Mali 0.13
France 1.09 Denmark 0.13
Italy 1.04 Norway 0.12
Turkey 1.00 Democratic Republic 

of Congo
0.12

Thailand 0.95 Switzerland 0.11
Poland 0.90 Paraguay 0.11
Pakistan 0.87 Slovakia 0.10
Ukraine 0.87 Cameroon 0.09
Spain 0.78 Uganda 0.09
Malaysia 0.76 Yemen 0.09
Argentina 0.74 Zambia 0.08
Kazakhstan 0.69 Tunisia 0.08
Nigeria 0.69 Uruguay 0.08
Viet Nam 0.67 Nepal 0.08
Taiwan 0.66 Mozambique 0.08
Egypt 0.65 Mongolia 0.08
Venezuela 0.61 Cambodia 0.07
Algeria 0.47 Madagascar 0.07
Iraq 0.47 Burkina Faso 0.07
Netherlands 0.44 Guatemala 0.07
Philippines 0.42 Sri Lanka 0.07
Colombia 0.34 Jordan 0.06
Czech Republic 0.30 Dominican Republic 0.06
Bangladesh 0.29 Croatia 0.06
Romania 0.28 Ghana 0.06
Belgium 0.27 Cote d’Ivoire 0.06
Ethiopia 0.26 Niger 0.05
Myanmar 0.25 Zimbabwe 0.05
Greece 0.24 Senegal 0.05
Morocco 0.23 Lithuania 0.05
Sudan 0.23 Estonia 0.05
Chile 0.23 Slovenia 0.04
Peru 0.22 Botswana 0.04
Angola 0.21 Honduras 0.04
Israel 0.19 Kyrgyzstan 0.04
Trinidad and Tobago 0.19 Nicaragua 0.04

Total 94.02
Countries sorted according to their mean shares in total world GHG emissions over the 
last 10 years in the sample (2008-2017), summing to a total share of 94% of world GHG 
emissions
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Nonparametric Efficiency Measurement

The starting point of the nonparametric approach is the concept of a technology set, comprising the feasible input-output combinations

 � � �� � � � ��
� �{ , , : , }x y u y uxm s r can produce0 0  (B1)

where x denotes the m-vector of the input quantities, y the s-vector of the quantities of the good (desirable) outputs and u the r-vector of 
the quantities of the bad (undesirable) outputs.6 This technology set it is supposed to be closed, bounded and convex (Färe and Primont, 
1995). In addition, standard axioms such as strong disposability of the inputs and the good outputs are supposed. In an environmental 
context with undesirable outputs two additional axioms are required. Null-jointness requires that it is not possible to produce positive 
quantities of the good outputs without generating emissions (i.e. if [x, y, u] ∈ T and u = 0 then y = 0). Weak disposability requires that 
emissions are to be reduced in equal proportion with the quantities of the good outputs (i.e. if [x, y, u] ∈ T then [x, αy, αu] ∈ T for α ∈ 
[0, 1]). Detailed discussions of these axioms can be found in Färe and Grosskopf (2004), Färe et al. (2005) and Zhou et al. (2008a).

Defined on the technology set is the DDF proposed by Chambers et al. (1996) and ex- tended to the incorporation of undesirable outputs 
by Chung et al. (1997). It can be formally stated as

DDF x y u x y ux y u g g g sup x g y g u g, , ; , , { : , , }� � � � � � �� ��� � � �0   (B2)

where the inefficiency measure δ expresses the distance of a particular input-output combination (x, y, u) towards the boundary of the 
technology set along a particular direction gx ≥ 0, gy ≥ 0, gu ≥ 0. This measure is larger than zero if the input-output combination is 
below the boundary (is below the frontier function) and is equal to zero if the input-output combination is a point on the boundary (is 
on the frontier function).

With data for the m inputs contained in the m × n matrix X, for the s good outputs contained in the s × n matrix Y, and the data for the r 
bad outputs contained in the r × n matrix U, the DDF for a country i can be computed as the solution of the linear programming problem

 (B3)

where xi, yi, and ui denote the ith column of the matrices X, Y, and U, respectively, comprising the quantities of country i (i = 1,..., n). The 
constraints jointly determine the technology set and lead to a piece-wise linear frontier function as its boundary. The inequality constraints 
pertain to the inputs and the (good) outputs, while the equality constraints for the bad outputs take account of weak disposability. As 
an ordinary linear programming problem the solution of (B3) can be easily computed by the simplex algorithm.

The solution of (B3) consists of the value for the inefficiency measure of country i, δi, and the n-vector λi ≥ 0 of the weight factors. 
These weight factors combine the input and output quantities of the countries for computing the efficient input-output combination on 
the frontier function along the specified direction with coordinates x̂ X= λi i , ŷ Y= λi i , and û U= λi i . The potential reductions of the 
r bad outputs for country i can be computed as guu ˆ δ− =i i i u  and the sum over all emissions by ( )ˆ1' u u= −i i iRP , with 1 denoting a 
conformable vector of ones and the prime denoting transposition. For this summation to be valid the emissions have to be expressed 
in a common unit of measurement, i.e. CO2 equivalents.

Since our objective in this paper is to determine the maximum emission reduction feasible within the data-determined technology set, 
we impose the restriction gx = 0 and gy = 0 in the following. The direction vector gu is computed endogenously as the solution of the 
linear programming problem, following the proposal of Hampf and Krüger (2015).7 Chen and Delmas (2012) point out that this has the 
additional advantage of avoiding the problem of dominated (weakly-efficient) reference points on the frontier function. In addition, it 
is beneficial to specify the directions as being proportional to the variables ui, which lets the inefficiency measure be invariant to units 
of measurement (e.g. Chung et al., 1997 and Färe et al., 2007).

6 In the subsequent discussion of the results we will frequently simply refer to outputs when we mean the good outputs, and to emissions when we mean the bad 
outputs.

7 See Färe et al. (2013) for a related proposal to compute endogenous directions in the case of a slacks-based inefficiency measure.
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Following Hampf and Krüger (2015), the following modified optimization problem to endogenize the computation of the direction vector

 (B4)

is solved, where “⊙” denotes the direct (Hadamard) product. The direction weights αu are computed jointly with δ and λ to determine 
the largest distance towards the frontier function. The identification of δ is permitted by the additional constraint 1′αu = 1.

Because of δ and αu arising multiplicatively in (B4) the optimization problem becomes nonlinear and is therefore difficult to solve. 
Defining γu = δαu the problem can be transformed to a well-behaved linear programming problem

  (B5)

The value of the objective function 1′γu = δ 1′αu is equal to δ as before, which is easily seen by taking the constraint 1′αu = 1 from (B4) 
into account. Program (B5) can be solved by the ordinary simplex algorithm.8 The solution values for δ and αu can be backed out from 
the solutions for γu by δ = 1′γu as well as αu = γu/δ.9

The optimization problems compute the inefficiency measures under the assumption of constant returns to scale (CRS). This is very 
restrictive in a cross-country setting with countries of rather different size. Measuring inefficiency under variable returns to scale (VRS) 
is usually induced by adding the constraint 1′λ = 1 to the optimization problems (Banker et al., 1984). In the case of environmental 
efficiency analysis, however, this would violate the weak disposability property. Zhou et al. (2008a) show how to induce VRS in a way 
that is consistent with weak disposability, leading to the modified linear programming problem

 (B6)

with an additional parameter β, which is bounded in [0, 1]. This problem can again be easily solved by the simplex algorithm. As before, 
we obtain the solution values for γu, which allow to back out δ = 1′γu and αu = γu/δ and to compute the emission reduction potentials. We 
stick to the VRS assumption throughout this paper. For a particular country i ∈ {1,..., n} the solution values are denoted δi, αui, γui and λi.

Based on the solution, the potential emission reductions for country i can be computed as u u ui i ui i i ui i� � �� � � . The potential 
emission reductions depend on the magnitude of the inefficiency measure δi as well as on the optimized direction vector αui of country 
i. The total emission reduction potential of country i is then again the sum over all emission variables ( )i i iˆRP =1' u - u . This aggregation 
is only valid if the r bad outputs are denominated on a common unit of measurement such as CO2 equivalents.

Bootstrapping

By construction, the estimated frontier functions computed according to (B3), (B5) or (B6) lead to the closest possible envelopment of 
the observed input-output combinations. Since no account is taken for measurement error, this leads to downward-biased estimates of 

8 For the actual computation of the solutions in this paper the R-package “lpSolve” is used.
9 In the case of the efficient countries (with δ = 0) the solution for αu is indeterminate. Clearly, there exists no direction towards the frontier function if an observation 

already stays on the frontier function.

û
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the inefficiency measures and the derived emission reductions potentials. Therefore, we implement a bootstrap bias correction based 
on a version of Simar and Wilson (1998) (see also Simar and Wilson, 2008; 2011), adapted to the DDF setting.10 Bootstrapping also 
allows to establish confidence intervals around the trend estimates, which we discuss subsequently.11

The smoothed bootstrap algorithm from Simar and Wilson (1998), which we adapt to the DDF setting, starts with computing the DDF 
and the optimal directions from the original data by solving (B6) to obtain δ̂i  as well as the optimal directions αui for all i = 1..., n. These 
directions are kept fixed during the bootstrap replications. Also, the bandwidth parameter h for the smoothing is chosen as described 
in Simar and Wilson (2011), where some R code is provided.

The main part of the bootstrapping algorithm then cycles B times through the following steps:
• A bootstrap resample is obtained by first drawing with replacement from 1 1{ ,..., , ,...,ˆ ˆ ˆ }ˆδ δ δ δ= − −n nD , which implements a boundary 

reflection about zero. The result of this step is denoted �i i n�� �1,..., .

• The smoothing step is performed by adding h⋅εi to each draw, where the εi are independent standard normal draws, thus obtaining 

� �i ih� �  and finally returning � � � � � ��i i ih h* � � � � �
�

�
�

�

�
� �

� �


/ /1 2 2  for all i = 1,...,n, where �
�

 and ��
2  denote the sample mean 

and variance of �i i n�� �1,..., , respectively.

• These resampled inefficiencies are used to construct the bootstrap resample of the reference points by setting x x*
i i= , y y*

i i= , 
( )* *ˆu u uδ δ= − − α i i i i ui i for all i = 1,..,n. By that operation, the observation (yt, ut) is first projected on the frontier (by δ̂+ i ) and 

then randomly away from the frontier (by ��i
* ) along the fixed direction (–αui ⊙ ui). The resulting bootstrap resample is 

X x x* * *� � �1 ,..., n , Y y y* * *� � �1 ,..., n  and U u u* * *� � �1 ,..., n .

• The efficiency measures are computed by solving (keeping the directions fixed)

 (B7)

for each i = 1.,n, where xi, yi, and ui constitute the original observation for country i, and X*, Y*, and U* are taken from the preceding 
step. The results are the bootstrap inefficiency measures *δ̂i  for all i = 1,...,n. From the bootstrap inefficiency measures the emission 
reduction potentials * *ˆû uδ∆ = α i i ui i  are obtained for all i = 1,...,n.12

Cycling through the preceding steps B = 2000 times we obtain the bootstrap resamples ( ˆ, )* *
i,b i,buδ ∆  with b = 1,...,B for each country 

i = 1,...,n. We run this procedure for each sample year separately but suppress the time index to avoid notational clutter.

Based on the bootstrap resamples, the bias correction can be obtained. Letting zt be the generic notation of a variable of interest 
(i.e. the quantity of emissions remaining after deducting the reduction potentials, aggregated over countries for a particular year t), 
we denote the estimate from the original data by ˆtz  and the bootstrap resamples by *

,ˆt bz  for each b = 1,...,B. The bias correction is 
performed by computing 

bc,ˆ ˆ bias= − tt tz z  with  1 *
,1

bia ˆs ˆ−
=

= −∑B
t t b tb

B z z . This measure is only computed when  ˆbias / 1/ 3σ >t t  

with ( ) ( )
212 * *

, ,1
ˆ ˆ1σ −

=
= − −∑B

t t b t bb
B z z  and * 1 *

, ,1
ˆ−

=
= ∑B

t b t bb
B zz . This rule ensures that the bias is only corrected if a reduction in the 

mean squared error of the estimate can be achieved (Simar and Wilson, 2008, pp. 449f.).

During the bootstrap resamples, we can obtain reduction potentials which are larger than the actual emission quantities. This problem 
is dealt with by pruning out those cases in the spirit of an accept-reject procedure. The bias correction and the confidence intervals are 
established from this truncated distribution. The number of bootstrap replications is sufficiently large to obtain reliable magnitudes 
after the pruning operation.

10 This bootstrap algorithm is simpler than that of the more complicated double bootstrap proposal of Simar et al. (2012), which we discuss in Krüger and Tarach 
(2022). See Alshehhi and Zervopoulos (2023) for an alternative approach with a Bayesian foundation.

11 The assessment of uncertainty is a controversially discussed issue in the area of climate change (see Dessai and Hulme (2004) for a review).
12 As a computational detail an offset is added to δ in (B7) and subtracted after the solution is obtained. This allows for negative values for δ arising during the 

bootstrap replications.


